3. Can trusted evidence help to cut through the noise?
There is a rapidly growing number of AI vendors out there. New algorithms for healthcare seem to emerge almost every week.
Any opportunities that can help your organisation to get a head start on what is likely to work, could help to deliver effective tools into clinical practice sooner.
This can mean more than glancing at small scale case studies.
Strong peer-reviewed evidence of the efficacy of AI driven approaches to diagnostics, in some cases backed by substantial samples, is now being published.
One of our customers in Sweden recently made international headlines for a detailed research study involving more than 80,000 women, that showed significant potential for AI in helping to reduce workload for breast radiologists by as much as 44%.
Such peer reviewed studies are not likely to replace the need for local validation, but they can help to narrow the field from a large choice of proven and unproven tools.
4. What can you do to leverage regional resources?
The government’s funding announcement focussed on trusts deploying AI tools. But that doesn’t mean those trusts need to work in isolation.
Imaging networks and regional consortia are continuing to mature in the NHS, and several of those regions we work with are electing to utilise their resources collaboratively.
For example, this could mean one trust out of five or six within a consortium, trialling an AI to detect lung cancers on chest x-rays, and sharing learnings with its partner trusts. Other trusts in the network might choose to trial other AI applications that perform a similar task, cutting down the time it takes to find the best tool for the job. Or they might trial AI applications in different areas and share what they learn.
5. Could your suppliers do some of the hard work for you?
NHS organisations will ultimately be responsible for investing the time needed to determine which AI tools are clinically effective for their patients.
But a lot of time and energy could be saved in other areas. Many trusts for example lack the resource to manage commercial relationships with multiple suppliers. They might also not have enough bandwidth to manage the technical, data, integration and infrastructure complexities that can come with individual AI procurements.
The answer for many is to allow core system suppliers to carry some of this burden for them. In the case of imaging, trusts might wish to examine if their picture archiving and communication system (PACS) vendor can help to accelerate the deployment of AI, without the need for new contracts with additional suppliers.
Customers in the NHS using our Amplifier Service, for example, have told us that this approach has provided an ability to introduce AI easily and seamlessly into the radiology workflow, whist saving months of time and effort on IT and infrastructure work.